Computer Vision Metrics Survey, Taxonomy, and Analysis.

dc.contributor.authorScott Krig.
dc.date.accessioned2025-10-13T16:29:54Z
dc.date.available2025-10-13T16:29:54Z
dc.date.issued2014
dc.descriptionLibro electrónico.
dc.description.abstractfeature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
dc.identifier.isbn978-1-4302-5930-5
dc.identifier.otherhttps://doi.org/10.1007/978-1-4302-5930-5
dc.identifier.urihttps://link.springer.com/openurl?genre=book&isbn=978-1-4302-5930-5
dc.identifier.urihttp://bibliovirtual.umar.mx:4000/handle/123456789/488
dc.language.isoen_US
dc.publisherApress
dc.titleComputer Vision Metrics Survey, Taxonomy, and Analysis.
dc.typeBook
eperson.firstnamenombre
person.jobTitletrabajo

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
computer vision .pdf
Tamaño:
15.87 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: